If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2=243
We move all terms to the left:
3t^2-(243)=0
a = 3; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·3·(-243)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54}{2*3}=\frac{-54}{6} =-9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54}{2*3}=\frac{54}{6} =9 $
| 3(b-14)=393 | | f-64=4.5 | | 21xx=105 | | x2+8x–55=10 | | x+(2/3+1/2+1/7)x=37 | | 3^(2x-1)=0.4^(x+2) | | 2x-3=x+4x= | | 3x-0.5(2x-1)=-0.4(x+2) | | 2x–5=4x+7. | | 7^x=12. | | x,7^x=12. | | 4{3x-5}=6x-2 | | -6x+5(2x-2)=-20-6x | | Y=-2|x+4|-1 | | 3(x=5)-2(3-2x)=23 | | 16=a4a= | | X/6x-7=47 | | A+c=405 | | 1/10x=8/9 | | (2x+11)+(6x-7)=90 | | 2^2^x^+^1-15(2^x)=8 | | 4x-17=8x+10=x | | 4x-17=8x+10 | | w-5/6=81/4 | | 8x=4x-16. | | 3^x*7^(2x+1)=37 | | 2m+5.3/12=9 | | 3.5x-10=2.5x+3 | | 3.5x-10=3.5x+3 | | ((X+4)/5))=((2/3)-(x-3)/6)) | | (3x+5)-⁴=64 | | (1/4)^m+7=16 |